シミュレーションのトビラ

シミュレーション技術に関する個人的メモ

EXCELでスピーカーシミュレーション(3)

3.音圧の式を求める

 点音源についての速度ポテンシャルの式が求まりましたので、これから音圧を求めます。音圧は、速度ポテンシャルを用いると下記の式で表すことができました。

 p = \rho_0 \dfrac{\partial \phi}{\partial t}

 これに式(18)を代入すると、下記となります。
 \begin{align} p &= \rho_0 \dfrac{\partial}{\partial t} \left( \dfrac{Q}{4 \pi r}e^{-j(kr- \omega t)} \right) \\ &= j \omega \rho_0 \dfrac{Q}{4 \pi r}e^{-j(kr- \omega t)} \end{align}

 上記の式は点音源、すなわちある一点からあらゆる方向に放射される角周波数\omegaの音波において、距離rと時間tにおける音圧を表すものです。しかし、スピーカーが発する音波はバッフルによって後方へは放射されず、前方にのみ放射されます。現実的には有限の面積を有するバッフルですが、ここでは理想的な無限大バッフルによって前方と後方とが完全に分断された状態を仮定します。この場合、後方へ放射されるはずの音波はバッフルによって反射して前方に放射される音波に足し合わされると考えます。そうすると、バッフルが無い場合の音圧に対して2倍の音圧となります。
 \begin{align} p &= 2 j \omega \rho_0 \dfrac{Q}{4 \pi r}e^{-j(kr- \omega t)} \\ &=  j \omega \rho_0 \dfrac{Q}{2 \pi r}e^{-j(kr- \omega t)} \end{align}

 そして、体積速度Qは、振動板面積 S_dと空気の粒子速度Vとの積で表すことができるので、上記式は下記となります。
 p = j \omega \rho_0 \dfrac{VS_d}{2 \pi r} e^{-j(kr- \omega t)} \tag{19}

 式(19)は、振動板からの距離r、時間t、角周波数\omegaを変数とした点音源の音圧を求める式です。これら変数に任意の定数を代入して、時間ごとの音圧pを求めれば、正弦波の波形が得られます。しかし、一般的にスピーカーの性能を評価するときには冒頭で紹介したように、時間tに関係なく、周波数ごとの音圧の大きさ、すなわち振幅の特性をグラフにした周波数特性で評価します。振幅の値は、 p(t)=Ae^{j \omega t}におけるAの部分ですので、式(19)をこの形に変形しますと、下記のようになります。
 \begin{align} p(t)&=Ae^{j \omega t} \\ &= j \omega \rho_0 \dfrac{VS_d}{2 \pi r} e^{-jkr} \cdot e^{j \omega t} \end{align}

となります。
 したがって、Aの部分に相当する以下の部分が、音圧の振幅を求める式であり、冒頭に紹介した式(1)となります。
 p= j \omega \rho_0 \dfrac{VS_d}{2 \pi r} e^{-jkr} \tag{1}

 さて、これまでスピーカーの出力音圧を求める式(1)を導出してぎしたが、実はまだ準備が足りません。式(1)のV、すなわち空気の粒子速度がわからないのです。
 次は、空気の粒子速度Vを求めます。


参考文献

 なお、これまでの式の導出のために参考にさせていただいた書籍やサイトは下記です。大変分かりやすく、参考になりました。
1. 「音響工学原論」 ~伊藤毅著~
 本書はPDF版が下記URLに公開されています。機械読み取りっぽいのでやや誤植もありますが、ありがたい限りです。
 Acoustic Lab. - Waseda Univ.
2. 「オーディオトランスデューサ工学」 ~大賀寿郎著~
 大賀先生の初学者向けに大変分かりやすく書いていただいている本です。
 オーディオトランスデューサ工学
3. 「はじめての音響数値シミュレーションプログラミングガイド」 ~日本建築学会編~
 本書は波動方程式導出を簡単に解説するとともに、有限要素法や境界要素法等の数値計算の具体的な解説がわかりやすく記載されています。
 はじめての音響数値シミュレーションプログラミングガイド
4. 「マクスウェルの方程式と電磁波」
 マセマ出版社の記事です。式変形が分かりやすく記載されています。
 マクスウェルの方程式と電磁波

前へ 2.速度ポテンシャルの導入
次へ 4.インピーダンスの導入